Ламповые ЭВМ - История вычислительной техники - Статьи
Вход пользователей




Запомнить меня

Восстановить пароль
Зарегистрироваться
Счетчик

Ламповые ЭВМ

Компьютеры первого поколения. Проекты и реализация машин «Марк-1», EDSAC и EDVAC в Англии и США, МЭСМ — в СССР заложили основы для развертывания работ по созданию ЭВМ вакуумно-ламповой технологии — серийных ЭВМ первого поколения.

Разработка первой серийной электронной машины UNIVAC (Universal Automatic Computer) начата при­мерно в 1947 г. Д. П. Эккертом и Д. Маучли, основав­шими в декабре того же года фирму Eckert — Mauchly. Первый образец машины (UNIVAC-1) был построен для бюро переписи США и пущен в эксплуатацию весной 1951 г. Вычислительная машина UNIVAC-1 синхронная, последовательного действия, создана на базе ЭВМ ENI АС и EDVAC. Работала с тактовой частотой 2,25 МГц и содержала около 5000 электронных ламп. Внутреннее запоминающее устройство емкостью 1000 12-разрядных десятичных чисел было выполнено на 100 ртутных линиях задержки.

Вскоре после ввода в эксплуатацию машины UNIVAC-1 ее разработчики выдвинули первые идеи автоматического программирования. Они сводились, по существу, к тому, чтобы машина сама могла подготавливать такую последовательность команд, которая нужна для решения данной задачи.

Пятидесятые годы — годы расцвета компьютерной техники, годы значительных достижений и нововведений как в архитектурном, так и в научно-техническом отношении. Отличительные особенности в архитектуре современных ЭВМ по сравнению с неймановской архитектурой впервые появились в ЭВМ первого поколения.

Сильным сдерживающим фактором в работе конструкторов ЭВМ начала 50-х гг. было отсутствие быстродействующей памяти. По словам одного из пионеров вычислительной техники Д. Эккерта, в те годы «архитектура машины определялась памятью» [12]. Исследователи сосредоточили свои усилия на запоминающих свойствах ферритовых колец, нанизанных на проволочные матрицы. В 1951 г. в 22-м томе Journal of Ар-plid Physics Д. Форрестер опубликовал статью о применении магнитных сердечников для хранения цифровой информации. В машине «Whirlwind-1» впервые была применена память на магнитных сердечниках. Она представляла собой два куба с 32X32X17 сердечниками, которые обеспечивали хранение 2048 слов для 16-разрядных двоичных чисел с одним разрядом контроля на четность.

В разработку электронных компьютеров включилась фирма IBM. В 1952 г. она выпустила свой первый промышленный электронный компьютер IBM-701, который представлял собой синхронную ЭВМ параллельного действия, содержащую 4000 электронных ламп и 12 000 германиевых диодов. Усовершенствованный вариант машины IBM-701 был выпущен в январе 1956 г. IBM-704 отличалась высокой скоростью рабо­ты, в ней использовались индексные регистры и данные представлялись в форме с плавающей запятой [11].

После ЭВМ IBM-704 была выпущена машина IBM-709, которая в архитектурном плане приближалась к машине второго и третьего поколений. В этой машине впервые была применена косвенная адресация, и впервые появились каналы ввода-вывода.

В 1956 г. фирмой IBM были разработаны плавающие магнитные головки на воздушной подушке. Изобретение их позволило создать новый тип памяти — дисковые ЗУ, значимость которых была в полной мере оценена в последующие десятилетия развития вычислительной техники. Впервые ЗУ на дисках появились в машинах IBM-305 и RAMAC-650. Последняя имела пакет, состоящий из 50 металлических дисков с магнитным покрытием, которые вращались со скоростью 1200 об/мин. На поверхности диска размещалось 100 дорожек для записи данных по 10 000 знаков каждая .

Вслед за выпущенным первым серийным компьютером UNIVAC-1 фирма Remington-Rand в 1952 г. выпустила ЭВМ UNIVAC-1103, которая работала в 50 раз быстрее. Позже в том компьютере впервые были применены программные прерывания.

В октябре 1952 г. группа сотрудников фирмы Remington-Rand предложила алгебраическую форму записи алгоритмов под названием «сокращенный код», которая интерпретировалась машиной строка за строкой по ходу выполнения программы. Здесь мы с особым удовольствием отметим имя еще одной дамы — офицера военно-морских сил США и руководителя группы программистов, капитана Грейс Хоппер, кото­рая разработала первую программу-компилятор А-0. Эта обслуживающая программа производила трансляцию на машинный язык всей программы, записанной в удобной для обработки алгебраической форме. А позже с ее участием был разработан язык КОБОЛ.

Фирма IBM также сделала первые шаги в области автоматизации программирования, создав в 1953 г. для машины IBM-701 «Систему быстрого кодирования». В 1957 г. группа под руководством Д. Бэкуса завершила работу над ставшим впоследствии популярным первым языком программирования высокого уровня, получившим название ФОРТРАН. Язык, реализованный впервые на ЭВМ IBM-704, способствовал расширению сферы применения компьютеров.

В Великобритании в июле 1951 г. на конференции в Манчестерском университете М. Уилкс представил доклад «Наилучший метод конструирования автоматической машины», который стал пионерской работой по основам микропрограммирования. Предложенный им систематический метод проектирования устройств управления нашел широкое применение. Свою идею микропрограммирования М. Уилкс реали­зовал в 1957 г. при создании машины EDSAC-II. М. Уилкс вместе с Д. Уиллером и С. Гиллом в 1951 г. выпустили первый учебник по программированию «Составление программ для электронных счетных ма­шин» (русский перевод 1953 г.).

В 1951 г. фирмой Ferranti стала серийно выпускаться машина «Марк-1». А через 5 лет фирма Ferranti выпустила ЭВМ «Pegasus», в которой впервые нашла воплощение концепция регистров общего назначения (РОН). Благодаря этой группе регистров устраняется различие между индексными регистрами и аккумуляторами, и поэтому в распоряжении программиста оказывается не один, а несколько регистров — аккумуляторов.

В СССР в 1948 г. проблемы развития вычислительной техники становятся общегосударственной задачей. В ряде организаций страны развернулись работы по созданию серийных ЭВМ первого поколения.

В 1950 г. в Институте точной механики и вычислительной техники (ИТМ и ВТ АН СССР) организован отдел цифровых ЭВМ для разработки и создания большой ЭВМ. Работу этого отдела возглавил С. А. Лебедев (1902—1974). В 1951 г. здесь была спроектирована машина БЭСМ, а в 1952 г. началась ее опытная эксплуатация.

В проекте вначале предполагалось использовать память на трубках Вильямса, но до 1955 г. в качестве элементов памяти в ней использовались ртутные линии задержки. По тем временам БЭСМ была весьма производительной машиной — 8000 оп/с. Она имела трехадресную систему команд, а для упрощения программирования широко применялся метод стандартных подпрограмм, который в дальнейшем положил начало модульному программированию, пакетам прикладных программ. Серийно машина стала выпускаться в 1956 г. под названием БЭСМ-2.

В этот же период в КБ, руководимом М. А. Лесечко, началось проектирование другой ЭВМ, получившей название «Стрела». Осваивать серийное производство этой машины поручено московскому заводу САМ. Главным конструктором стал Ю. Я. Базилевский, а одним из его помощников — Б. И. Рамеев, в дальнейшем конструктор машин серии «Урал». Проблемы серийного производства предопределили некоторые особенности «Стрелы»: невысокое по сравнению с БЭСМ быстродействие, просторный монтаж и т. д. В машине применялись 45-дорожечные магнитные ленты в качестве внешней памяти, а оперативная память — на трубках Вильямса. «Стрела» имела большую разрядность и удобную систему команд.

Первая ЭВМ «Стрела» была установлена в отделении прикладной математики Математического института АН СССР (МИАН), а в конце 1953 г. началось серийное ее производство.

В лаборатории электросхем Энергетического института АН СССР коллектив под руководством И. С. Брука в 1951 г. построил макет небольшой ЭВМ первого поколения под названием М-1. В следующем году здесь была создана вычислительная машина М-2, которая положила начало созданию экономичных машин среднего класса. Одним из ведущих разработчиков данной машины был М. А. Карцев, внесший впоследствии большой вклад в развитие отечественной вычислительной техники. В машине М-2 использовалось 1879 ламп, меньше чем в «Стреле», а средняя производительность составляла 2000 оп/с. Были задействованы три типа памяти: электростатическая на 34 трубках Вильямса, на магнитном барабане и на магнитной ленте с использованием обычного для того времени магнитофона МАГ-8.

В 1955—1956 гг. коллектив лаборатории выпустил малую ЭВМ М-3 с быстродействием 30 оп/с и оперативной памятью на магнитном барабане. Особенность М-3 заключалась в том, что для центрального устройства управления был использован асинхронный принцип работы. Необходимо отметить, что в 1956 г. коллектив И. С. Брука выделился из состава Энергетического института АН СССР и образовал Лабораторию управляющих машин и систем АН СССР, ставшую впоследствии Институтом электронных управляющих машин (ИНЭУМ).

Еще одна малая вычислительная машина под названием «Урал» была выпущена в 1954 г. коллективом сотрудников под руководством Б. И. Рамеева. Эта машина стала родоначальником целого семейства «Уралов», последняя серия которых («Урал-16») была выпущена в 1967 г. Простота машины, удачная конструкция, невысокая стоимость обусловили ее широкое применение.

В 1955 г. был создан Вычислительный центр Академии наук СССР, предназначенный для ведения научной работы в области машинной математики и для предоставления открытого вычислительного обслуживания другим организациям Академии.
Во второй половине 50-х гг. в нашей стране было выпущено еще восемь типов машин по вакуумно-ламповой технологии. Из них наиболее удачной была ЭВМ М-20, созданная под руководством С. А. Лебедева, который в 1954 г. возглавил ИТМ и ВТ.

Машина отличалась высокой производительностью (20 тыс. оп/с), что было достигнуто использованием совершенной элементной базы и соответствующей функционально-структурной организации. Как отмечают А. П. Ершов и М. Р. Шура-Бура, «эта солидная основа возлагала большую ответственность на разработчиков, поскольку машине, а более точно ее архитектуре, предстояло воплотиться в нескольких крупных сериях (М-20, БЭСМ-ЗМ, БЭСМ-4, М-220, М-222)». Серийный выпуск ЭВМ М-20 был начат в 1959 г.

В 1958 г. под руководством В. М. Глушкова (1923— 1982) в Институте кибернетики АН УССР была создана вычислительная машина «Киев», имевшая производительность 6—10 тыс. оп/с. Машина «Киев» впервые в нашей стране использовалась для дистанционного управления технологическими процессами.

В то же время в Минске под руководством Г. П. Лопато и В. В. Пржиялковского начались работы по созданию первой машины известного в дальнейшем семейства «Минск-1». Она выпускалась Минским заводом вычислительных машин им. Серго Орджоникидзе в различных модификациях: «Минск-1», «Минск-11», «Минск-12», «Минск-14». Машина широко использовалась в вычислительных центрах нашей страны. Средняя производительность машины составляла 2—3 тыс. оп/с.

Производство ЭВМ первого поколения в нашей стране прекратилось в 1964 г. [16].

Успехи полупроводниковой технологии и связанное с этим совершенствование структуры, расширение функций и усложнение задач предопределило смену элементной базы вычислительных машин. Немаловажным обстоятельством для перехода от вакуумно-ламповой технологии к полупроводниковой явились недостатки, свойственные электронным лампам. Большие габариты и большая масса ламповой аппаратуры тяготили разработчиков, а значительное потребление электроэнергии и недостаточная надежность — эксплуатационников ЭВМ. Достаточно вспомнить, что из 18 000 ламп в машине ЕNIАС ежемесячно заменялось 2000; вакуумно-ламповая технология уже стала тормозом в развитии вычислительной техники.

Джон фон Нейман вспоминал: «Машина так велика, что ее включение каждый раз «уносит» две лампы». Поиск неисправностей занимал до нескольких суток.

Интересно отметить, что пассивные элементы значительно реже выходили из строя. В машине ЕNIАС использовалось 7000 резисторов, из них были забракованы через 9000 ч работы только пять. Из 10 000 германиевых диодов, установленных в БЭСМ-1, в течение двухлетней эксплуатации заменены единицы.

Новая элементная база ЭВМ — полупроводниковые и магнитные элементы — зарождалась в недрах старой. Сначала лампы были заменены германиевыми диодами в оперативной памяти, затем в арифметическом и управляющем устройствах. Позже в оперативной памяти для реализации логических функций стали применять ферритдиодные ячейки. И наконец, качественный скачок — двойные вакуумные триоды и пентоды, на которых выполнены статические и динамические триггеры, блокинг-генераторы, формирователи и другие узлы, были заменены транзисторами.

Читатель, видимо, уже отметил, что за этот исторически короткий период разными фирмами созданы многие ЭВМ, отличающиеся по архитектуре, аппаратному и математическому обеспечению, элементной базе и другим признакам. Это было начало стихийного процесса, порожденного конкуренцией фирм и конструкторов, процесса негативного, лавинообразного. Страдал от него потребитель (пользователь). Однажды сделав выбор, пользователь вынужден был и в дальнейшем приобретать оборудование только этой фирмы. Машины разных фирм не были согласованы между собой ни в аппаратном, ни в программном отношении. Чтобы воспользоваться продукцией другой фирмы, необходимо было полностью избавиться от ранее приобретенного оборудования. Сделать это не просто — хлопотно и дорого.

Вопросы унификации и стандартизации нигде в мире до конца не разрешены до настоящего времени. Пользователи стали отдавать предпочтение наиболее удачной разработке, а потом уже вынуждены были останавливать свой выбор на наиболее распространенном компьютере, надеясь на взаимный обмен программами и оборудованием. Так, к настоящему времени международным эталоном (условным стандартом), а попросту наибольшим спросом пользуется оборудование фирмы IBM. Теперь это единственная фирма, имеющая на международном рынке надежные позиции. Естественно, другие фирмы постоянно испытывают судьбу в отчаянных попытках вырвать передовые рыночные позиции у фирмы IBM, но пока они успеха не имели.

Аркадий Петрович Частиков
"Вычислительная техника и ее применение" 1988/1

  Печать

Навигация по статьям
Предыдущая статья Провозвестники компьютерной эры Транзисторные ЭВМ Следующая статья